

BMC065. 3 In 4 Out Logic Gates

If you have any questions, or need help trouble shooting, please e-mail Michael@Bartonmusicalcircuits.com

I What it does / Truth Tables
II Schematics
III Construction
A.Parts List
B.The Board

I. What it Does

This is a logic module initially designed to create three 2 -input AND gates and a 3-input AND gate using just three inputs. Because a number of logic gate chips in the CD4000 series use the same pin configuration, you can swap the logic chip in the circuit to have it act as an OR, XOR, NAND, NOR or XNOR instead of an AND. The arrangement of gates makes it intuitive for AND and OR gates, and less predictable for other gates.

Truth tables for each type of gate are provided below. A truth table documents what outputs are active depending on what inputs are active. On the tables a " 1 " indicates a high input or output and a " 0 " indicates a low output. A high input is any voltage over 0.12 V and a high output is +5 V , a low input is any voltage below 0.12 V and a low output is 0 V .

AND	Chip to use:						CD4081
IN1	$\ln 2$	$\ln 3$	Out 12	Out 23	Out 31		
0	Out 123						
0	0	0	0	0	0		
1	0	0	0	0	0		
0	1	0	0	0	0		
0	0	1	0	0	0		
1	1	0	1	0	0		
0	1	1	0	1	0		
1	0	1	0	0	1		
1	1	1	1	1	1		

OR	Chip to use:						CD4071
IN1	ln2	ln3	Out 12	Out 23	Out 31		
0	0	Out 123					
0	0	0	0	0	0		
1	0	0	1	0	1		
0	1	0	1	1	0		
0	0	1	0	1	1		
1	1	0	1	1	1		
0	1	1	1	1	1		
1	0	1	1	1	1		
1	1	1	1	1	1		

XOR		Chip to use: CD4030				
		In3	Out 12	Out 23	Out 31	Out 123
0	0	0	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	1	0	1	1	1
1	1	0	0	1	1	0
0	1	1	1	0	1	0
1	0	1	1	1	0	0
1	1	1	0	0	0	1

NAND	Chip to use: CD4011					
IN1		In3	Out 12	Out 23	Out 31	Out 123
0	0	0	1	1	1	
1	0	0	1	1	1	
0	1	0	1	1	1	-
0	0	1	1	1	1	0
1	1	0	0	,	1	
0	1	1	1	0	1	0
1	10	1	1	1	0	0
1	1	1	0	0	0	

NOR	Chip to use: CD4001					
IN1	In2	In3	Out 12	Out 23	Out 31	Out 123
0	0	0	1	1	1	0
1	0	0	0	1	0	
0	1	0	0	0	1	
0	0	1	1	0	0	
1	1	0	0	0	0	
0	1	1	0	0	0	
1	0	1	0	0	0	0
1	1	1	0	0	0	0

XNOR	Chip to use: CD4077					
IN1	In2	In3	Out 12	Out 23	Out 31	Out 123
0	0	0	1	1	1	1
1	0	0	0	1	0	1
0	1	0	0	0	1	1
0	0	1	1	0	0	1
1	1	0	1	0	0	0
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	1	1	1	1

II. Schematic

Above is the schematic for this module. On the left we see three input jacks. The tip of each jack is connected to a switching diode in series with a 100 K resistor connected to another 100 k resistor to ground and the positive input of an LM339 comparator. The comparator has an input voltage range of just 0 to +5 V , so the diode prevents negative voltages from reaching the comparator and the 100 K in sereis with the diode will create a voltage divider with the $2^{\text {nd }} 100 \mathrm{~K}$ to halve input voltage to prevent signals over +5 V from reaching the comparator.

Each comparator's threshold is set by a $100 \mathrm{~K} / 1 \mathrm{~K}$ voltage divider creating a voltage of 0.12 V . The outputs are connected to 10 K pull up resistors that will bring the output to +5 V when the input voltage goes above the threshold. The outputs of the comparators are connected to the gates of the CD4081. An unused comparator's inputs are grounded.

Each gate's output connects to an LED through an LED and output jack through 1 K current limiting resistors. The top gate's output is also sent to an input for the bottom gate in order to create a three input AND gate.

At the bottom of the schematic are the power connections. This module uses only the positive voltage rail. The incoming +12 V signal is filtered by a passive RC filter formed by a 10 ohm resistor and 10 uf capacitor. This voltage is then regulated to +5 V by a 7805 and further filtered by 10uf capacitors and 01 uf capacitors. The LM339 and CD4081 are both powered by the +5 V supply.

III Construction

A.PARTS LIST

SEMICONDUCTORS

Name/Value	QTY	Notes
LM339	1	14 pin DIP package.
CD4081 or other quad gate chip	1	14 pin DIP package
7805	1	TO-92 package
1N4148	3	Or any small switching diode
LED	4	3mm. Resistor values assume normal red LED, for high effeciency LEDs or brighter colors you may want to increase some resistor values

RESISTORS

Name/Value	QTY	Notes
10 ohms	1	All resistors $1 / 4 \mathrm{~W}$ metal film except potentiometers
1 K	9	
10 K	3	
100 K	7	

CAPACITORS

Name/Value	QTY	Notes
.luf	3	cheap ceramic disc. Value not critical.
10uf	2	Electrolytic, 16 V or higher rating.

OTHER

Name/Value	QTY	Notes
14 pin DIP socket	2	
Power connecter	1	Right angle $2 \times 52.54 \mathrm{~mm}, \underline{\text { like this. }}$
Jacks	7	PCB is designed around these jacks: PJ-323M

B. THE BOARD

The PCB is $98 \mathrm{~mm} \times 36 \mathrm{~mm}$. The jacks are spaced 13.97 mm apart (.55 inch). Below are images of the PCB with and without traces present. The image of the PCB with traces does not show connections to ground.

